Convert Pandas Column to DateTime
To convert a column in a Pandas DataFrame to a datetime data type, you can use the pandas.to_datetime()
function. This function takes a series of strings and converts them to a datetime data type.
Here's an example of how to use to_datetime()
to convert a column in a DataFrame:
import pandas as pd
# Load the data
df = pd.read_csv('data.csv')
# Convert the 'Date' column to datetime
df['Date'] = pd.to_datetime(df['Date'])
# Print the data types
print(df.dtypes)
This will convert the 'Date' column in the DataFrame to a datetime data type. You can then use the dt
accessor to access specific attributes of the datetime objects, such as the year or month.
For example:
# Extract the year from the datetime objects
df['Year'] = df['Date'].dt.year
# Extract the month
df['Month'] = df['Date'].dt.month
This will create two new columns in the DataFrame, 'Year' and 'Month', containing the year and month of the datetime objects in the 'Date' column.